

Sirenza Microdevices⁷ SGC-2386Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with a patented active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 3V supply, the SGC-2386Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SGC-2386Z is designed for high linearity 3V gain block applications that require small size and minimal external components. It is internally matched to 50 ohms.

SGC-2386Z

50-4000 MHz Active Bias Silicon Germanium Cascadable Gain Block

Product Features

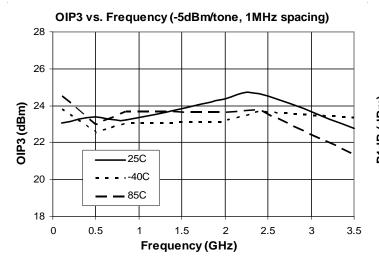
- Single Fixed 3V Supply
- No Dropping Resistor Required
- Patented Self-Bias Circuitry
- P1dB = 9.7 dBm at 1950 MHz
- OIP3 = 23 dBm at 1950 MHz
- Robust 1000V ESD, Class 1C HBM

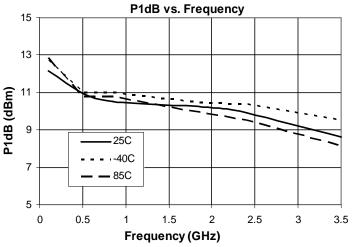
Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS, WCDMA
- IF Amplifier
- Wireless Data, Satellite

Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.
			850 MHz	15.5	17.0	18.5
G	Small Signal Gain	dB	1950 MHz	11	12.5	14
			2400 MHz		11.4	
			850 MHz		10.5	
P _{1dB}	Output Power at 1dB Compression	dBm	1950 MHz	8.7	9.7	
			2400 MHz		9.9	
			850 MHz		23.0	
OIP ₃	Output Third Order Intercept Point	dBm	1950 MHz	21	23.0	
			2400 MHz		24.5	
IRL	Input Return Loss	dB	1950 MHz	14.0	18.0	
ORL	Output Return Loss	dB	1950 MHz	12.5	16.5	
NF	Noise Figure	dB	1930 MHz		3.8	4.8
V _D	Device Operating Voltage	V			3	
Ι _D	Device Operating Current	mA		22	26	30
Rth, j-l	Thermal Resistance (junction to lead)	°C/W			205	
Test Condition	Test Conditions: $V_D = 3.0V$ $I_D = 26mA$ $T_L = 25^{\circ}C$		OIP ₃ Tone Spa	acing = 1MH	z	
Bias Tee Data $Z_S = Z_L = 5$		50 Ohms	Pout per tone	= -5 dBm		

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2007 Sirenza Microdevices, Inc.. All worldwide rights reserved.


303 S. Technology Ct. Broomfield, CO 80021


EDS-104972 Rev C

Symbol	Parameter	Unit	Frequency (MHz)					
		Onit	100 500 850 1950	2400	3500			
G	Small Signal Gain		18.4	18.0	17.0	12.5	11.4	9.0
OIP ₃	Output Third Order Intercept Point	dBm	23.5	23.5	23.0	24.5	24.5	23.0
P _{1dB}	Output Power at 1dB Compression	dBm	11.0	11.0	10.5	10.2	9.9	8.6
IRL	Input Return Loss	dB	24.0	19.0	20.0	18.0	18.0	16.0
ORL	Output Return Loss	dB	23.0	18.5	19.0	16.5	15.5	14.5
S ₁₂	Reverse Isolation	dB	20.5	21.5	22.0	20.0	19.5	18.0
NF	Noise Figure	dB	2.9	3.0	3.3	3.8	3.9	4.7

Typical Performance with Bias Tee, $V_{D} = 3V$, $I_{D} = 26mA$

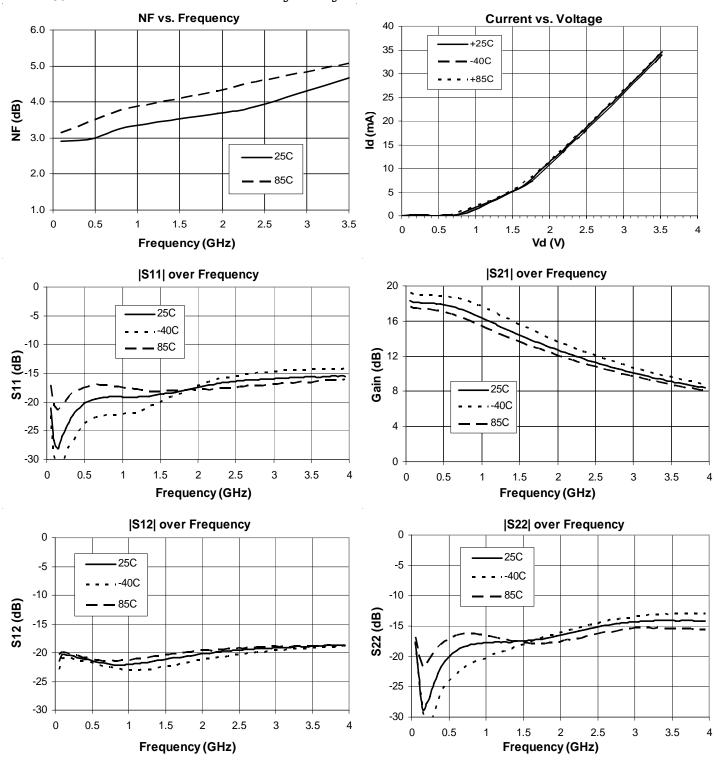
Caution: ESD sensitive

Appropriate precautions in handling, packaging

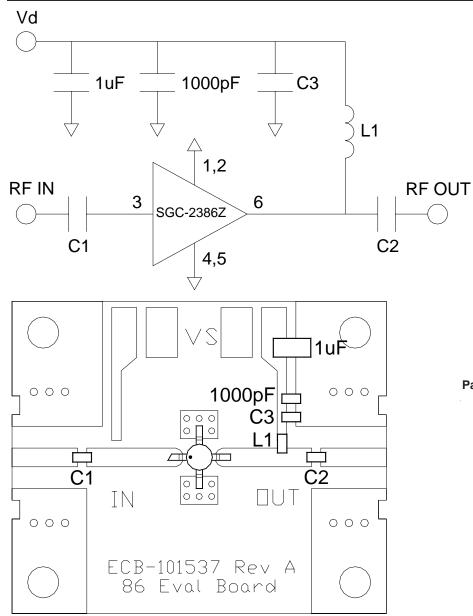
and testing devices must be observed.

Absolute Maximu	m Ratings	Reliability & Qualification Information			
Parameter	Absolute Limit	Parameter	Rating		
Max Device Current (I _{CE})	55 mA	ESD Rating - Human Body Model (HBM)	Class 1C		
Max Device Voltage (V _{CE})	4.5 V	Moisture Sensitivity Level MSL			
Max. RF Input Power* (See Note)	+18 dBm	This product qualification report can be downloaded at			
Max. Junction Temp. (T_J)	+150°C	www.sirenza.com			
Operating Temp. Range (T_L)	-40°C to +85°C				
Max. Storage Temp.	+150°C	Caution: ESD sensitive			

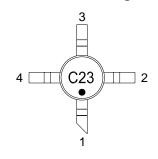
*Note: Load condition, $Z_L = 50$ Ohms


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L) / R_{TH}, j-I$ $T_L = T_{LEAD}$

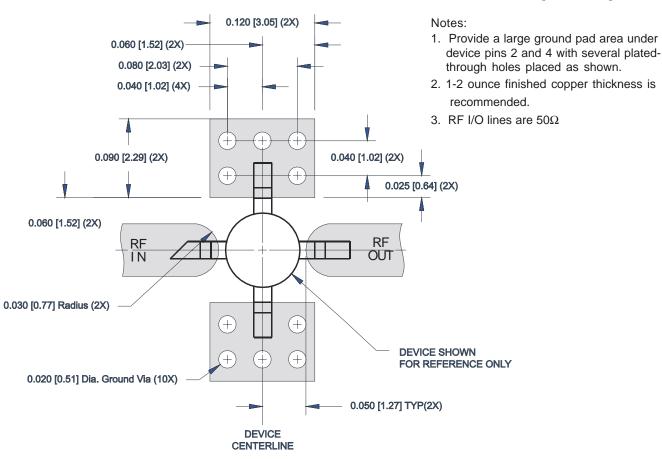


Typical Performance with Bias Tee, $V_D = 3V$, $I_D = 26mA$

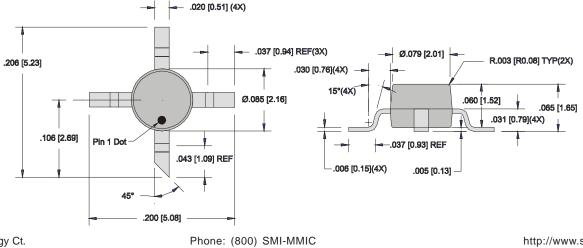

303 S. Technology Ct. Broomfield, CO 80021

Application Circuit Schematic					
Application Circuit Element Values					
Reference Designator	100-2000MHz	2000-4000MHz			
C1	1000pF	2.7pF			
C2	100pF	6.8pF			
C3	100pF	6.8pF			
L1	150nH	39nH			

Part Identification Marking & Pinout



Pin #	Function	Description	Part / Evaluation Board Ordering Information			
1		RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation	Part Number	Description	Reel Size	Devices / Reel
2,4 GN		Connection to ground. Use via holes as close to the device	SGC-2386Z	Lead Free, RoHs Compliant	13"	3000
		ground leads as possible to reduce ground inductance and achieve optimum RF performance	SGC-2386Z-EVB1	100-2000 MHz Evaluation Board	N/A	N/A
3	RF OUT /	FOUT / lexternal DC blocking capacitor chosen for the frequency of	SGC-2386Z-EVB2	2000-4000 MHz Evaluation Board	N/A	N/A
	DC BIAS					


86 PCB Pad Layout

Dimensions in inches [millimeters]

86 Nominal Package Dimensions

Dimensions in inches [millimeters] A link to the 86 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

